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If we consider the particular situation 

where the two coupled coils are wound 

around a single closed magnetic core, 

with the same core flux, , linking all 

the turns of both coils, we could write: 
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Which means that: 
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On the other hand, if we consider that 

the wire resistance of the coils is 

negligible, we deduce that the 

transformer under consideration is 

lossless: 
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These equations are applicable when 

both currents are flowing into the 

dots and both voltages are positive at 

the dots, as shown in the following 

Figure: 

However, the normal power flow 

through such coil combination takes 

place from an input current in the 

primary to an output current in the 

secondary, as shown in the following 

Figure. In this case, the corresponding  

voltage and current equations could be 

written as: 
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In both cases, such coil combination is 

called Ideal Transformer. It is 

modeled using the word “Ideal” under 

the two coils, two vertical lines 

representing the common core, and two 

numbers N1 and N2 representing the 

turns ratio of the transformer. 

We note that although the voltage and 

current levels change through an ideal 

transformer, the power levels do not! 
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Note that practical transformers do 

not use dots as such. Instead, they use 

markings specified in the US by the 

National Electrical Manufacturers 

Association (NEMA). These markings 

are conceptually equivalent to the dots. 

Now, if we consider the following 

phasor-domain circuit: 

Since both voltage phasors are 

positive at the dots, we could write: 
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And since one current phasor enters 

the dot while the other leaves the dot: 
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In other words: 
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Therefore, the input impedance is: 
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Which means that the load impedance, 

ZL is reflected into the primary side by 

the square of the turns ratio. 



Strategy: reflect impedance into the 

primary side and make transformer 

“transparent to user.” 
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If we designate the turns ratio as n: 
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The previous equations could be 

rewritten as: 
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When using these equations, care must 

be taken regarding the polarities of  

voltages, the directions of  currents, 

and the positions of dots. 

Example 10.8 – Voltages and 
Currents in an Ideal Transformer 

E 10.6 – Reflecting Load Impedance 
into the Primary 
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It is possible to use the Thévenin or 

Norton Theorems to replace the 

transformer and the primary circuit by 

their equivalent circuit. 

Considering the voltage polarities and 

the current directions in the above 

circuit, we could write: 
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Looking into the circuit to the left of 

nodes 2-2, we could write: 
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On the other hand, the Thévenin 

equivalent impedance is calculated 

using the following circuit: 
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The resulting equivalent circuit with the 

transformer made “transparent” and 

reflected, along with the primary into 

the secondary becomes: 

In a similar fashion, it is possible to use 

the Thévenin Theorem to replace the 

transformer and the secondary circuit 

by their equivalent circuit. In this case, 

we replace the circuit to the right of 

nodes 1-1 : 
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In this case, we could write: 

On the other hand, the Thévenin 

equivalent impedance is the secondary 

impedance reflected into the primary: 

The resulting equivalent circuit 

becomes: 

As a general rule, when finding the 

equivalent circuit for the transformer 

and its primary circuit, each primary 

voltage is multiplied by n, each 

primary current is divided by n, and 

each primary impedance is 

multiplied by n2, and conversely. 

However, powers are the same whether 

calculated on the primary or the 

secondary side. 

We note that if the location of one of the 

dots is different from that shown in the 

present circuit, the turns ratio n will need 

to be replaced by –n. 

We also note that if the transformer 

circuit is different from the typical 

circuit shown in the present circuit, 

Thévenin Theorem is typically applied to 

reduce the circuit to its present form. 
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Example 10.9 – Determining the 
Equivalent Circuits 

Step 1: Examine the voltage polarities 

and current directions with 

respect to the transformer dots: 

 If both voltages are positive at 

the dots: v1/ v2 = N1/ N2,  

 otherwise: v1/ v2 = -N1/ N2 

 If one current enters the 

dotted terminal and the other 

leaves the dotted terminal:  

 i1/i2 = N2/ N1,  

 otherwise:  

 i1/i2 = -N2/ N1 

Step 2: For a typical circuit, made up of 

a single primary mesh and a 

single secondary mesh, reflect 

the primary into the 

secondary or vice versa, using 

the reflection equations, solve 

the resulting circuit using 

common circuit analysis 

techniques, then reflect back to 

the original circuit to 

determine the required variables 

– Note that impedances are 

scaled in magnitude only 

Step 3: For more complex circuits, with 

unconnected windings, use 

Thévenin Theorem to reduce 

the circuit to a typical circuit. 

Example 10.10 – Working With an 
Atypical Circuit 
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E 10.8 – Calculation of Primary 
Current in a Typical Circuit 
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Example 10.11 – Ideal Transformer 
with Connected Windings 

We note that if the ideal transformer 

has its windings electrically 

connected, the equivalent circuit 

techniques (primary to secondary and 

vice-versa) cannot, in general, be 

used. Instead, nodal and mesh analysis 

is used, along with the transformer 

voltage and current transformation 

equations.   
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Phasor transformation equations for 

ideal Transformer: 
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Nodal equations: 
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Solving: 

END OF 

CHAPTER 


